You'll need these two integration techniques:

• Integration by substitution (setting u = g(x)):

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du.$$

For indefinite integrals,

$$\int f(g(x))g'(x)\,dx = \int f(u)\,du$$

where you find an antiderivative of f(u) on the right side, and then substitute u = g(x) to get back the answer in terms of x.

• Integration by parts (setting u = f(x), v = g'(x)):

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x)\Big|_{x=a}^{x=b} - \int_{a}^{b} g(x)f'(x) \, dx.$$

By "abuse of notation", we write it

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du.$$

For indefinite integrals, it becomes

$$\int u\,dv = uv - \int vdu.$$

Problem 1

Compute the following indefinite integrals.

1.
$$\int \sin^2(x) \cos^3(x) \, dx. \quad Hint: \ \cos^2(x) = 1 - \sin^2(x).$$

2.
$$\int \sin(x) \cos^3(x) \, dx.$$

3.
$$\int \cos^2(x) \, dx. \quad Hint: \ There \ is \ an \ easy \ way, \ and \ there \ is \ a \ hard \ way$$

4.
$$\int \sin^2(x) \cos^2(x) \, dx.$$

5.
$$\int \log(x) \, dx.$$

6.
$$\int x^n e^x \, dx, \ \text{for} \ n \in \mathbb{N}.$$

Problem 2

For which $\alpha \in \mathbb{R}$ does the improper integral $\int_0^1 x^\alpha dx$ converge? What about $\int_1^\infty x^\alpha dx$?

Problem 3 [Question Redacted]

Suppose $f: [1,\infty) \to \mathbb{R}$ is decreasing, nonnegative, and $\int_{1}^{\infty} f(x) dx$ converges.

1. Show that for every $y \in (0, f(1)]$, there is a unique x such that f(x) = y.

2. Define $f^{-1}: (0, f(1)] \to \mathbb{R}$. Show that

$$\int_0^{f(1)} f^{-1}(y) \, dy = \int_1^\infty f(x) \, dx$$

Hint: Draw graphs for both and compare the area under each curve.

Problem 4

1. Let $f : \mathbb{R} \to \mathbb{R}$ be an even, continuous function. Show that for any $a \in \mathbb{R}$ we have

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

2. Let $f : \mathbb{R} \to \mathbb{R}$ be an odd, continuous function. Show that for any $a \in \mathbb{R}$ we have

$$\int_{-a}^{a} f(x)dx = 0$$

Remark: this is true for integrable functions in general, but a fun exercise in *u*-substitution. **Remark 2:** It is tempting to look at the result of (2) and conclude that $\int_{-\infty}^{\infty} f(x)dx = 0$, but this is not the way we've defined the above integral; due to how chaotic things can get at infinity it's important the two infinities are considered separately.