You'll need these two integration techniques:

• Integration by substitution (setting $u = g(x)$):

$$
\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.
$$

For indefinite integrals,

$$
\int f(g(x))g'(x) dx = \int f(u) du
$$

where you find an antiderivative of $f(u)$ on the right side, and then substitute $u = g(x)$ to get back the answer in terms of x .

• Integration by parts (setting $u = f(x), v = g'(x)$):

$$
\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)\Big|_{x=a}^{x=b} - \int_{a}^{b} g(x)f'(x) dx.
$$

By "abuse of notation", we write it

$$
\int_a^b u \, dv = uv \Big|_a^b - \int_a^b v \, du.
$$

For indefinite integrals, it becomes

$$
\int u\,dv = uv - \int vdu.
$$

Problem 1

Compute the following indefinite integrals.

\n- 1.
$$
\int \sin^2(x) \cos^3(x) \, dx
$$
. *Hint:* $\cos^2(x) = 1 - \sin^2(x)$.
\n- 2. $\int \sin(x) \cos^3(x) \, dx$.
\n- 3. $\int \cos^2(x) \, dx$. *Hint:* There is an easy way, and there is a hard way.
\n- 4. $\int \sin^2(x) \cos^2(x) \, dx$.
\n- 5. $\int \log(x) \, dx$.
\n- 6. $\int x^n e^x \, dx$, for $n \in \mathbb{N}$.
\n

Problem 2

For which $\alpha \in \mathbb{R}$ does the improper integral \int_1^1 0 $x^{\alpha} dx$ converge? What about \int^{∞} 1 $x^{\alpha} dx$?

Problem 3 [Question Redacted]

Suppose $f : [1, \infty) \to \mathbb{R}$ is decreasing, nonnegative, and $\int_{-\infty}^{\infty}$ 1 $f(x) dx$ converges.

- 1. Show that for every $y \in (0, f(1)]$, there is a unique x such that $f(x) = y$.
- 2. Define $f^{-1} : (0, f(1)] \to \mathbb{R}$. Show that

$$
\int_0^{f(1)} f^{-1}(y) \, dy = \int_1^\infty f(x) \, dx.
$$

Hint: Draw graphs for both and compare the area under each curve.

Problem 4

1. Let $f : \mathbb{R} \to \mathbb{R}$ be an even, continuous function. Show that for any $a \in \mathbb{R}$ we have

$$
\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx
$$

2. Let $f : \mathbb{R} \to \mathbb{R}$ be an odd, continuous function. Show that for any $a \in \mathbb{R}$ we have

$$
\int_{-a}^{a} f(x)dx = 0
$$

Remark: this is true for integrable functions in general, but a fun exercise in u-substitution.

Remark 2: It is tempting to look at the result of (2) and conclude that $\int_{-\infty}^{\infty} f(x)dx = 0$, but this is not the way we've defined the above integral; due to how chaotic things can get at infinity it's important the two infinities are considered separately.